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We describe a sequential importance sampling (SIS) procedure for analyzing two-way zero–one or contingency tables with fixed marginal
sums. An essential feature of the new method is that it samples the columns of the table progressively according to certain special distri-
butions. Our method produces Monte Carlo samples that are remarkably close to the uniform distribution, enabling one to approximate
closely the null distributions of various test statistics about these tables. Our method compares favorably with other existing Monte Carlo-
based algorithms, and sometimes is a few orders of magnitude more efficient. In particular, compared with Markov chain Monte Carlo
(MCMC)-based approaches, our importance sampling method not only is more efficient in terms of absolute running time and frees one
from pondering over the mixing issue, but also provides an easy and accurate estimate of the total number of tables with fixed marginal
sums, which is far more difficult for an MCMC method to achieve.
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1. INTRODUCTION

1.1 Darwin’s Finch Data

In ecology, researchers are often interested in testing theo-
ries about evolution and the competition among species. The
zero–one table shown in Table 1 is called an occurrence ma-
trix in ecological studies. The rows of the matrix correspond
to species; the columns, to geological locations. A “1” or “0”
in cell (i, j) represents the presence or absence of species i
at location j. The occurrence matrix in Table 1 represents
13 species of finches inhabiting 17 islands of the Galápagos
Islands (an archipelago in the East Pacific). The data are known
as “Darwin’s finches,” because Charles Darwin collected some
of these species when he visited the Galápagos. Darwin sug-
gests in The Voyage of the Beagle that his observation of the
striking diversity in these species of finches started a train of
thought that culminated in his theory of evolution. [However,
Sullaway (1982) showed that Darwin did not realize the signif-
icance of the finches until years after he visited the Galápagos.]
Cook and Quinn (1995) cataloged many other occurrence ma-
trices that have been collected. The ecological importance of the
distribution of species over islands was described by Sanderson
(2000) as follows: “Birds with differing beaks may live side by
side because they can eat different things, whereas similarly en-
dowed animals may not occupy the same territory because they
compete with one another for the same kinds of food. Ecol-
ogists have long debated whether such competition between
similar species controls their distribution on island groups or
whether the patterns found simply reflect chance events in the
distant past.”

From a statistical standpoint, the null hypothesis that the pat-
tern of finches on islands is the result of chance rather than
competitive pressures can be translated to the statement that the
observed zero–one table is a “typical” sample drawn uniformly
from the set of all tables with the observed row and column
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marginal sums. The number of islands that each species inhab-
its (the row sums) and the number of species on each island (the
column sums) are kept fixed under the null hypothesis to reflect
the fact that some species are naturally more widespread than
others and some islands are naturally more accommodating to
a wide variety of species than others (Manly 1995; Connor and
Simberloff 1979). For testing whether there is competition be-
tween species, Roberts and Stone (1990) suggested the test sta-
tistic

S̄2 = 1

m(m − 1)

∑

i �=j

s2
ij, (1)

where m is the number of species, S = (sij) = AAT , and
A = (aij) is the occurrence matrix. The null hypothesis is re-
jected if S̄2 is too large. Sanderson (2000) used the number of
instances of two specific species living on the same island as
the test statistic, which corresponds to focusing on two rows
and counting the number of columns in which both of these
rows contain a 1. More test statistics have been discussed by
Connor and Simberloff (1979), Wilson (1987), Manly (1995),
Sanderson, Moulton, and Selfridge (1998), and Sanderson
(2000). Our methods apply to all of these approaches.

A difficult challenge in carrying out these tests is that there
are no good analytic approximations to the null distributions
of the corresponding test statistics. We show how to simulate
the zero–one tables nearly uniformly, then adjust the samples
using importance weights. We can thus obtain a good approxi-
mation to the null distribution of any test statistic, as well as an
estimate of the total number of the zero–one tables that satisfy
marginal constraints. Although several methods for generating
tables from the uniform distribution conditional on marginal
sums have been proposed in the literature, most of them are
inefficient and some are incorrect (see Sec. 6.2).

1.2 Problem Formulation

From magic squares to Darwin’s theory of evolution, prob-
lems of counting the total number of tables and testing hypothe-
ses about them arise in many fields, including mathematics,
statistics, ecology, education, and sociology. Although fixing
the marginal sums makes these problems much more difficult,
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Table 1. Occurrence Matrix for Darwin’s Finch Data

Island

Finch A B C D E F G H I J K L M N O P Q

Large ground finch 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
Medium ground finch 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
Small ground finch 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
Sharp-beaked ground finch 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1
Cactus ground finch 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0
Large cactus ground finch 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
Large tree finch 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0
Medium tree finch 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Small tree finch 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0
Vegetarian finch 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
Woodpecker finch 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0
Mangrove finch 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Warbler finch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NOTE: Island name code: A = Seymour, B = Baltra, C = Isabella, D = Fernandina, E = Santiago, F = Rábida, G = Pinzón, H = Santa Cruz, I = Santa Fe, J = San Cristóbal, K = Española,
L = Floreana, M = Genovesa, N = Marchena, O = Pinta, P = Darwin, Q = Wolf.

it is important to do in many applications. For statistical appli-
cations in which the subjects are not obtained by a sampling
scheme but are the only ones available to the researcher, condi-
tioning on the marginal sums of the table creates a probabilistic
basis for a test (Lehmann 1986, chap. 4.7). In some other ap-
plications, such as those related to the Rasch (1960) model, the
marginal sums are sufficient statistics under the null hypothe-
sis. Conditioning on the marginal sums is a way to remove the
effect of nuisance parameters on tests (Lehmann 1986, chap. 4;
Snijders 1991).

Because the interactions among the row and column sum
constraints are complicated, no truly satisfactory analytical
solutions or approximations are available for distributions of
various test statistics (Snijders 1991). The table-counting prob-
lem is slightly more approachable analytically, although it is
more challenging algorithmically. Several asymptotic methods
have been developed for approximating the count of zero–
one or contingency tables with fixed marginal sums (Békéssy,
Békéssy, and Komlos 1972; Gail and Mantel 1977; Good and
Crook 1977); however, these formulas are usually not very ac-
curate for tables of moderate size. Wang (1988) provided an
exact formula for counting zero–one tables, which was further
improved by Wang and Zhang (1998). However, their exact
formula is very complicated, and both of those authors (by per-
sonal communication) think that the formula would take too
long to compute for Table 1, which is only of moderate size
among our examples.

From a practical standpoint, if we can simulate tables from
the uniform or a nearly uniform distribution, then we can
both estimate the total count of the tables and approximate
the distribution of any test statistic that is a function of the
table. Several algorithms for generating uniform zero–one ta-
bles have been proposed (Connor and Simberloff 1979; Wilson
1987; Besag and Clifford 1989; Rao, Jana, and Bandyopadhyay
1996; Sanderson et al. 1998; Sanderson 2000; Cobb and Chen
2003), and an importance sampling idea has been suggested
by Snijders (1991). Algorithms for generating contingency ta-
bles from the uniform distribution have also been developed
(Balmer 1988; Boyett 1979; Patefield 1981), including a re-
cent Markov chain Monte Carlo (MCMC) method by Diaconis
and Gangolli (1995). Forster, McDonald, and Smith (1996) and

Smith, Forster, and McDonald (1996) suggested a Gibbs sam-
pling approach to sample multiway contingency tables when
the underlying distribution is Poisson or multinomial. Holmes
and Jones (1996) used the rejection method both to sample con-
tingency tables from the uniform distribution and to estimate
the total number of such tables with fixed margins. In our expe-
rience, however, all of these methods encounter difficulties for
large, sparse tables and are especially vulnerable or ineffective
when used to estimate the total number of tables.

We describe a sequential importance sampling (SIS) ap-
proach for approximating statistics related to the uniform distri-
bution on zero–one and contingency tables with fixed margins.
The distinctive feature of the SIS approach is that the generation
of each table proceeds sequentially column by column and the
partial importance weight is monitored along the way. Section 2
introduces the basic SIS methodology and the rules for evalu-
ating the accuracy and efficiency of our estimates. Section 3
describes how we apply conditional-Poisson sampling together
with the SIS for generating zero–one tables. Section 4 proposes
a more delicate SIS method that is guaranteed to always gen-
erate proper tables. Section 5 generalizes the SIS method from
zero–one tables to contingency tables. Section 6 shows some
applications and numerical examples, including statistical eval-
uation of Table 1 and a count of the number of tables with the
same row and column sums as Table 1, and Section 7 concludes
with a brief discussion on the method.

2. SEQUENTIAL IMPORTANCE SAMPLING

Given the row sums r = (r1, r2, . . . , rm) and the column sums
c = (c1, c2, . . . , cn), we let �rc denote the set of all m × n
(zero–one or contingency) tables with row sums r and column
sums c (assuming that �rc is nonempty). Let p(T) = 1/|�rc| be
the uniform distribution over �rc. If we can simulate a table
T ∈ �rc from a “trial distribution” q(·), where q(T) > 0 for all
T ∈ �rc, then we have

Eq

[
1

q(T)

]
=

∑

T∈�rc

1

q(T)
q(T) = |�rc|.

Hence, we can estimate |�rc| by

|̂�rc| = 1

N

N∑

i=1

1

q(Ti)
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from N iid samples T1, . . . ,TN drawn from q(T). Furthermore,
if we are interested in evaluating µ = Epf (T), then we can use
the weighted average,

µ̂ =
∑N

i=1 f (Ti)(p(Ti)/q(Ti))∑N
i=1(p(Ti)/q(Ti))

=
∑N

i=1 f (Ti)(1/q(Ti))∑N
i=1(1/q(Ti))

, (2)

as an estimate of µ. For example, if we let

f (T) = 1{χ2 statistic of T≥s},

then (2) estimates the p value of the observed chi-square statis-
tic s.

The standard error of µ̂ can be simply estimated by further
repeated sampling. A more analytical method is to approximate
the denominator of µ̂ by the δ-method so that

std(µ̂) ≈
(

varq

{
f (T)

p(T)

q(T)

}
+ µ2 varq

{
p(T)

q(T)

}

− 2µ covq

{
f (T)

p(T)

q(T)
,

p(T)

q(T)

})1/2/
N1/2.

However, because this standard deviation is dependent on the
particular function of interest, it is also useful to consider
a “function-free” criterion, the effective sample size (ESS)
(Kong, Liu, and Wong 1994) to measure the overall efficiency
of an importance sampling algorithm,

ESS = N

1 + cv2
,

where the coefficient of variation (CV) is defined as

cv2 = varq{ p(T)/q(T)}
E2

q{ p(T)/q(T)} ,

which is equal to varq{1/q(T)}/E2
q{1/q(T)} for the current

problem. The cv2 is simply the chi-square distance between the
two distributions p and q; the smaller it is, the closer the two
distributions are. Heuristically, the ESS measures how many iid
samples are equivalent to the N weighted samples. Throughout
the article, we use cv2 as a measure of efficiency for an im-
portance sampling scheme. In practice, the theoretical value of
the cv2 is unknown, so its sample counterpart is used to esti-
mate cv2, that is,

cv2 ≈
∑N

i=1{1/q(Ti) − [∑N
j=1 1/q(Tj)]/N}2/(N − 1)

{[∑N
j=1 1/q(Tj)]/N}2

,

where T1, . . . ,TN are N iid samples drawn from q(T).
A central problem in importance sampling is constructing

a good trial distribution q(·). Because the target space �rc is
rather complicated, it is not immediately clear what proposal
distribution q(T) can be used. Note that

q
(
T = (t1, . . . , tn)

)

= q(t1)q(t2|t1)q(t3|t2, t1) · · ·q(tn|tn−1, . . . , t1), (3)

where t1, . . . , tn denote the configurations of the columns of T.
This factorization suggests that it is perhaps a fruitful strategy
to generate the table sequentially, column by column, and use
the partially sampled table to guide the sampling of the next

column. More precisely, the first column of the table is sam-
pled conditional on its marginal sum c1. Conditional on the re-
alization of the first column, the row sums are updated, and the
second column is sampled in a similar manner. This procedure
is repeated until all of the columns are sampled. The recursive
nature of (3) gives rise to the name sequential importance sam-
pling. A general theoretical framework for SIS was given by Liu
and Chen (1998). SIS is in fact just an importance sampling al-
gorithm, but the design of the proposal distribution is adaptive
in nature.

3. SAMPLING ZERO–ONE TABLES: THEORY
AND IMPLEMENTATION

To avoid triviality, we assume throughout the article that none
of the row or column sums is 0, none of the row sums is n, and
none of the column sums is m. For the first column, we need
to choose c1 of the m possible positions to put 1’s in. Suppose
that the c1 rows that we choose are i1, . . . , ic1 . Then we need
consider only the new m × (n − 1) subtable. The row sums of
the new table are updated by subtracting the respective numbers
in the first column from the original row sums. Then the same
procedure can be applied to sample the second column.

For convenience, we let r(l)
j , j = 1, . . . ,m denote the updated

row sums after the first l − 1 columns have been sampled. For
example, r(1)

j = rj, and, after sampling the positions i1, . . . , ic1

for the first column, we have

r(2)
j =

{
r(1)

j − 1, if j = ik for some 1 ≤ k ≤ c1

r(1)
j , otherwise.

(4)

Let c(l)
j , j = 1, . . . ,n − (l − 1), l = 1, . . . ,n, denote the updated

column sums after we have sampled the first l − 1 columns.
That is, after sampling the first l − 1 columns, we update the
lth column in the original table to the first “current column” so
that (c(l)

1 , . . . , c(l)
n−(l−1)) = (cl, . . . , cn).

A naive way to sample the c1 nonzero positions for the
first column (and, subsequently, the other columns) is from
the uniform distribution, which can be rapidly executed. But
this method turns out to be very inefficient; the cv2 routinely
exceeds 10,000, making the effective sample size very small.
Although it is perhaps helpful to apply the resampling idea (Liu
and Chen 1998), a more direct way to improve efficiency is to
design a better sampling distribution. Intuitively, we want to
put a “1” in position i if the row sum ri is very large, and a “0”
otherwise. To achieve this goal, we adopt here the conditional-
Poisson (CP) sampling method described by Brewer and Hanif
(1983) and Chen, Dempster, and Liu (1994).

3.1 Sampling From the Conditional Poisson Distribution

Let

Z = (Z1, . . . ,Zm) (5)

be independent Bernoulli trials with probability of successes
p = (p1, . . . ,pm). Then the random variable

SZ = Z1 + · · · + Zm

is said to follow the Poisson-binomial distribution. In the next
section we provide some choices of the pi for the zero–one table
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simulation. The conditional distribution of Z given SZ is called
the CP distribution. If we let wi = pi/(1 − pi), then it is easy to
see that

P(Z1 = z1, . . . ,Zm = zm|SZ = c) ∝
m∏

k=1

wzk
k . (6)

Chen et al. (1994) and Chen and Liu (1997) provided five
schemes to sample from the CP distribution; we adopt their
drafting sampling method here. Sampling from the CP distri-
bution, as defined in (6), can be described through sampling c
units without replacement from the set {1, . . . ,m} with proba-
bility proportional to the product of each unit’s “weight” wi. Let
Ak (k = 0, . . . , c) denote the set of selected units after k draws.
Thus A0 = ∅, and Ac is the final sample that we obtain. At the
kth step of the drafting sampling (k = 1, . . . , c), a unit j ∈ Ac

k−1
is selected into the sample with probability

P( j,Ac
k−1) = wjR(c − k,Ac

k−1\ j)

(c − k + 1)R(c − k + 1,Ac
k−1)

,

where

R(s,A) =
∑

B⊂A,|B|=s

(∏

i∈B

wi

)
.

Most of the computing time required by this sampling proce-
dure is spent on calculating R(s,A) through the recursive for-
mula R(s,A) = R(s,A\{s})+wsR(s−1,A\{s}), and the whole
process is of order O(s|A|). (See Chen et al. 1994; Chen and Liu
1997 for more details on CP sampling and its applications.)

3.2 Justification of the Conditional-Poisson Sampling

The following theorem, the proof of which is given in Ap-
pendix A, provides some insight on why the CP distribution is
desirable in the sequential sampling of zero–one tables.

Theorem 1. For the uniform distribution over all m×n zero–
one tables with given row sums r1, . . . , rm and first column
sum c1, the marginal distribution of the first column is the
same as the conditional distribution of Z [defined by (6)] given
SZ = c1 with pi = ri/n.

Because the desired (true) marginal distribution for the
first column t1 is p(t1) = P(t1|r1, . . . , rm, c1, . . . , cn), it is
natural to let the sampling distribution of t1 be q(t1) =
P(t1|r1, . . . , rm, c1), which is exactly the CP distribution with
pi = ri/n. Suppose that we have sampled the first l − 1 columns
during the process; we then update the current number of
columns left, n− (l−1), and the current row sums r(l)

i , and gen-
erate column l with the CP sampling method using the weights
r(l)

i /[n − (l − 1) − r(l)
i ]. Because the CP distribution q(t1) is not

exactly the same as the true marginal distribution of t1, we may
want to adjust the weights to make q(t1) closer to p(t1); see
Section 7 for further discussion. In our experience, however,
CP sampling without any adjustment of the weights already ex-
hibited very good performance (see the examples in Sec. 6).
During the sampling process, if any row sum equals 0 (or the
number of rows left), then one can fill that row by 0 (or 1) and
remove it from further consideration.

One requirement for an importance sampling algorithm to
work is that the support of the proposal distribution q(·) must

contain the support of the target distribution p(·). It is easy to
see that for any zero–one table T that satisfies the row and col-
umn sum constraints, its first column t1 has a nonzero sam-
pling probability q(t1). The same argument applies recursively
to q(t2|t1), and so on, which shows that q(T) > 0. In fact, the
support of q(·) is larger than �rc (see Sec. 4), and a more del-
icate SIS algorithm is provided in Section 4 guaranteeing that
the support of the proposal distribution is the same as �rc.

The asymptotic analysis of Good and Crook (1977) provided
another intuition for the use of CP sampling. In particular, they
gave the following approximation to the number of zero–one
matrices with fixed row sums r = (r1, r2, . . . , rm) and column
sums c = (c1, c2, . . . , cn):

|�rc| ∼ �rc ≡
∏m

i=1

(n
ri

)∏n
j=1

(m
cj

)

(mn
M

) , (7)

where M = ∑m
i=1 ri = ∑n

j=1 cj. Let v(i1, . . . , ic1) be the zero–
one vector of length m that has ikth component equal to 1 for
1 ≤ k ≤ c1 and all other components equal to 0. For a particu-
lar configuration of the first column, t1 = v(i1, . . . , ic1), we let
r(2) = (r(2)

1 , . . . , r(2)
m ) and c(2) = (c2, . . . , cn) be the updated row

and column sums as defined in (4). Then, by approximation (7),
we have

p
(
t1 = v

(
i1, . . . , ic1

)) ≈ �r(2)c(2)

�rc
∝

c1∏

k=1

rik

n − rik
.

Thus this approximation also suggests that we should sample
the first column according to the CP distribution with weights
proportional to ri/(n − ri).

Békéssy et al. (1972) gave another asymptotic result for |�rc|,
|�rc| ∼ �∗

rc ≡ M!∏m
i=1 ri!∏n

j=1 cj!e−α(r,c), (8)

where

α(r, c) = 2
[∑m

i=1

(ri
2

)][∑n
j=1

(cj
2

)]
(
∑m

i=1 ri)(
∑n

j=1 cj)

= 1

2M2

m∑

i=1

(r2
i − ri)

n∑

j=1

(c2
j − cj).

This approximation has been proven to work well for large and
sparse zero–one matrices. By (8), we have

p
(
t1 = v

(
i1, . . . , ic1

)) ≈ �∗
r(2)c(2)

�∗
rc

∝
c1∏

k=1

rik e−α(r(2),c(2)).

We note that

α
(
r(2), c(2)

) =
∑n

j=2(c
2
j − cj)

(M − c1)2

m∑

i=1

(
r(2)

i

2

)

and
∑m

i=1

(r(2)
i
2

) = ∑m
i=1(r

2
i − ri)/2 + c1 − ∑c1

k=1 rik . Hence,

�∗
r(2)c(2)

�∗
rc

∝
c1∏

k=1

rik edrik ,

where d = ∑n
j=2(c

2
j − cj)/(M − c1)

2. Thus another CP sam-
pling distribution can be conducted with the weights propor-
tional to riedri .
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Although it is not clear whether the approximations (7) or (8)
are accurate for a given table, we observed that these two
CP-based SIS methods performed similarly well in all of the
settings that we have tested and were extremely accurate when
the marginal sums do not vary much. For the rest of the arti-
cle, we focus on the CP sampling strategy based on approxi-
mation (7) (see Chen 2001 for further discussion of different
sampling strategies for zero–one tables).

4. A MORE DELICATE SEQUENTIAL IMPORTANCE
SAMPLING METHOD

Although the SIS procedure described in the previous section
is already very effective, we found that sometimes the sampling
cannot proceed after a few columns have been generated, be-
cause no valid zero–one table can be produced. For example,
suppose that we want to sample tables with row sums 4, 4,
2, and 1 and column sums 3, 3, 3, 1, and 1. If we happen to
draw the first column as (1,0,1,1)T and the second column as
(1,1,1,0)T , then we would have no way to sample the third
column. In the following, we show that there exists an easy-to-
check condition that guarantees the existence of subtables with
the updated row and column sums. This condition helps us de-
velop a more delicate SIS procedure for sampling more effi-
ciently from �rc. Before we describe the procedure, we first
provide some background (see Marshall and Olkin 1979 for
more details).

Definition 1. For any x = (x1, . . . , xn) ∈ Rn, we let
x[1] ≥ · · · ≥ x[n] denote the components of x in decreasing or-
der. For x,y ∈Rn, we define x ≺ y if






k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, . . . ,n − 1

n∑

i=1

x[i] =
n∑

i=1

y[i].

(9)

When x ≺ y, x is said to be majorized by y (y majorizes x).

Lemma 1. Suppose that ( j1, . . . , jn) is a permutation of
(1, . . . ,n). Then x ≺ y implies that






k∑

i=1

xji ≤
k∑

i=1

y[i], k = 1, . . . ,n − 1

n∑

i=1

xji =
n∑

i=1

y[i].

(10)

Proof. Because x[1] ≥ · · · ≥ x[n] are the components of x in
decreasing order and ( j1, . . . , jn) is a permutation of (1, . . . ,n),
we have






k∑

i=1

xji ≤
k∑

i=1

x[i], k = 1, . . . ,n − 1

n∑

i=1

xji =
n∑

i=1

x[i].

(11)

x ≺ y implies (9). The lemma follows immediately from
(11) and (9).

Definition 2. Let a1,a2, . . . ,an be nonnegative integers, and
define

a∗
j = #{ai : ai ≥ j}, j = 1,2, . . . .

The sequence a∗
1,a∗

2,a∗
3, . . . is said to be conjugate to a1,a2,

. . . ,an. Note that the conjugate sequence {a∗
i } is always nonin-

creasing and is independent of the order of the ai.

Lemma 2 (Gale 1957; Ryser 1957). Let r1, . . . , rm be non-
negative integers not exceeding n, and c1, . . . , cn be nonneg-
ative integers not exceeding m. A necessary and sufficient
condition for the existence of an m × n zero–one table with row
sums r1, . . . , rm and column sums c1, . . . , cn is that

c ≡ (c1, . . . , cn) ≺ (r∗
1 , . . . , r∗

n) ≡ r∗,

or, equivalently, r ≡ (r1, . . . , rm) ≺ (c∗
1, . . . , c∗

m) ≡ c∗.

Because the size of �rc does not depend on the order of the
row sums, we can arrange that r1 ≥ · · · ≥ rm without loss of
generality. Let the conjugate of (c(1)

1 , . . . , c(1)
n ) = (c1, . . . , cn)

be (c(1)∗
1 , . . . , c(1)∗

n ). The conjugate of (c(2)
1 , . . . , c(2)

n−1), denoted

by (c(2)∗
1 , . . . , c(2)∗

n−1), is

c(2)∗
j =

{
c(1)∗

j − 1, 1 ≤ j ≤ c1

c(1)∗
j , j > c1.

From Lemma 2, we know that a necessary and sufficient con-
dition for the existence of an m × (n − 1) zero–one table with
row sums r(2)

1 , . . . , r(2)
m and column sums c(2)

1 , . . . , c(2)
n−1 is that

r(2) ≡ (
r(2)

1 , . . . , r(2)
m

) ≺ (
c(2)∗

1 , . . . , c(2)∗
m

) ≡ c(2)∗;
that is,






k∑

i=1

r(2)
[i] ≤

k∑

i=1

c(2)∗
i , k = 1, . . . ,m − 1

m∑

i=1

r(2)
[i] =

m∑

i=1

c(2)∗
i ,

where r[i] denotes the components of r in decreasing order.
From Lemma 1, we know that r(2) ≺ c(2)∗ implies that






k∑

i=1

r(2)
i ≤

k∑

i=1

c(2)∗
i , k = 1, . . . ,m − 1

m∑

i=1

r(2)
i =

m∑

i=1

c(2)∗
i .

(12)

Thus (12) is clearly a necessary condition for the existence of
the subtable with new row sums and column sums. We prove in
the following theorem that it is also a sufficient condition.

Theorem 2. Let a′ = (a′
1, . . . ,a′

n), b = (b1, . . . ,bn). Suppose
that a′

1 ≥ · · · ≥ a′
n and b1 ≥ · · · ≥ bn are all nonnegative integers

and there are d ≥ 1 nonzero components in b. Pick any d′, 1 ≤
d′ ≤ d, nonzero components from b, say bk1, . . . ,bkd′ . Define
b′ = (b′

1, . . . ,b′
n) as

b′
j =

{
bj − 1, if j = ki for some 1 ≤ i ≤ d′
bj otherwise
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and suppose that b′ satisfies





k∑

i=1

b′
i ≤

k∑

i=1

a′
i, k = 1, . . . ,n − 1

n∑

i=1

b′
i =

n∑

i=1

a′
i.

(13)

Then b′ is majorized by a′.

The proof of Theorem 2 is given in Appendix B. The reason
that this result is not entirely trivial is that b′ is not necessar-
ily ordered. For example, if a′ = (4,4,2,1), b = (4,4,3,1),
and d′ = 1, then b′ might be (3,4,3,1). To see that the the-
orem implies that condition (12) is necessary and sufficient,
we let a′ = c(2)∗, b = r(1) (= r), and b′ = r(2) and let con-
dition (12) hold. Theorem 2 implies that b′ ≺ a′ or, equiva-
lently, r(2) ≺ c(2)∗, which, according to Lemma 2, guarantees
that there exists some zero–one subtable having the new row
sums r(2) and column sums c(2).

Although we do not know r(2) before we sample the
first column, we can restate condition (12) from the current
r(1) and c(2)∗. For each 1 ≤ k ≤ m, we compare

∑k
i=1 ri and∑k

i=1 c(2)∗
i :

• If
∑k

i=1 ri >
∑k

i=1 c(2)∗
i , then we must put at least∑k

i=1 ri − ∑k
i=1 c(2)∗

i 1’s at or before the kth row in the
first column. For convenience, we may call k a knot.

• If
∑k

i=1 ri ≤ ∑k
i=1 c(2)∗

i , then there is no restriction at the
kth row.

These two conditions can be summarized by two vectors,
one vector recording the positions of the knots, denoted by
(k[1], k[2], . . . ), and the other vector recording how many 1’s
we must put at or before those knots, denoted by (v[1],v[2], . . . ).
To make the conditions easier to implement, we eliminate some
redundant knots:

a. If v[ j] ≤ v[i] for some j > i, then we ignore knot k[ j].
b. If v[ j] − v[i] ≥ k[ j] − k[i] for some j > i, then we ignore

knot k[i]. If the restriction on knot k[ j] is satisfied, then it will
guarantee that the restriction on knot k[i] is also satisfied.

Using the foregoing conditions, we design the following, more
delicate, CP sampling strategy.

• We are required to place at least v[1] but no more than
min(k[1], c1) 1’s at or before row k[1]. So we assign equal
probability to these choices, that is,

q1
{
(number of 1’s at or before row k[1]) = i

}

= 1

min(k[1], c1) − v[1] + 1

for v[1] ≤ i ≤ min(k[1], c1).
• After the number of 1’s o1 at or before row k[1] is chosen

according to the foregoing distribution, we pick the o1 po-
sitions between row 1 and row k[1] using the CP sampling
with weights ri/(n − ri). (See Sec. 7 for other choices of
weights. Sampling uniformly instead of using the CP dis-
tribution for this step can reduce the algorithm’s efficiency
by several orders of magnitude.)

• After o1 positions have been chosen for knot 1, we con-
sider knot 2 conditional on the 1’s that we have already
placed at or before knot 1. Because we are required to
place at least v[2] 1’s at or before row k[2], the number
of 1’s o2 that we could put between knot 1 and knot 2
ranges from max(v[2]−o1,0) to min(k[2]−k[1], c1−o1).
We assign equal probability to all of these choices for o2.
Then we pick the o2 positions between row k[1] and k[2]
once again using CP sampling.

• We continue the procedure until all of the knots in col-
umn 1 have been considered.

• After we have completed the first column, we record the
probability q(t1) of getting such a sample for the first
column, update the row sums, rearrange the updated row
sums in decreasing order, and repeat the procedure with
the second column.

The foregoing, more delicate CP sampling strategy improves
on the basic CP sampling by checking the existence of sub-
tables with the updated row and column sums when sampling
each column. The support of the basic CP sampling strategy
proposed in Section 3.2 is larger than �rc (the set of all m × n
zero–one tables with row sums r and column sums c). Lemma 2
and Theorem 2 guarantee that we can always have a valid table
in �rc by the more delicate CP sampling. Therefore, the sup-
port for the more delicate CP sampling strategy is the same
as �rc. This allows us to sample more efficiently from �rc,
without generating any invalid tables. The reader may want to
look ahead to Section 6 for examples.

5. SAMPLING CONTINGENCY TABLES

Sampling from contingency tables is much easier to imple-
ment than sampling from zero–one tables, because there are
fewer restrictions on the values that each entry can take. For
a contingency table, given positive row sums r1, . . . , rm and col-
umn sums c1, . . . , cn, the necessary and sufficient condition for
the existence of a contingency table with such row and column
sums is

r1 + r2 + · · · + rm = c1 + c2 + · · · + cn ≡ M.

This is much simpler than the Gale–Ryser condition, which
makes the whole procedure much simpler to implement.

We still sample column by column as we did for zero–one ta-
bles. Suppose that the element at the ith row and the jth column
is aij. We start from the first column. We have that a11 must
satisfy

0 ≤ a11 ≤ r1,

c1 −
m∑

i=2

ri = c1 + r1 − M ≤ a11 ≤ c1.

So, combining the two equations, we have

max(0, c1 + r1 − M) ≤ a11 ≤ min(r1, c1).

It is also easy to see that this is the only condition that a11 needs
to satisfy. Recursively, suppose that we have chosen ai1 = a′

i1



Chen, Diaconis, Holmes, and Liu: Sequential Importance Sampling 115

for 1 ≤ i ≤ k − 1. Then the only restriction on ak1 is

max

(
0,

(
c1 −

k−1∑

i=1

a′
i1

)
−

m∑

i=k+1

ri

)

≤ ak1 ≤ min

(
rk, c1 −

k−1∑

i=1

a′
i1

)
.

Thus we need to consider only the strategy for sampling a11,
and can apply the same strategy recursively to sample other
cells.

If we collapse columns 2 to m and rows 2 to n to form
a 2 × 2 table with a11 as the only variable, then the uniform
distribution on all tables implies that a11 is uniform in its
range [max(0, c1 + r1 − M),min(r1, c1)]. However, if we con-
sider both a11 and a21 simultaneously (i.e., the original table
is collapsed into a 3 × 2 table), then for each a11 = x, the
choices of a21 range from max(0, c1 + r1 + r2 − M − x) to
min(r2, c1 − x). Thus, if our goal is to sample a 3 × 2 table
uniformly, then we should have

P(a11 = x)

∝ min(r2, c1 − x) − max(0, c1 + r1 + r2 − M − x) + 1.

An analog of conditional Poisson sampling could be developed.
Our examples in Section 6 show, however, that the simple uni-
form sampling of a11 seems to have already worked very well.

6. APPLICATIONS AND SIMULATIONS

In the examples in this section, we generated zero–one tables
by the more delicate CP sampling with weights proportional
to r(l)

i /[n − (l − 1) − r(l)
i ] (see Sec. 4), which we call the CP

sampling for abbreviation. Contingency tables are generated by
the SIS algorithm proposed in Section 5. All examples were
coded in C language and run on an Athlon workstation with
a 1.2-GHz processor.

6.1 Counting Zero–One Tables

Here we apply the SIS procedure described in Section 4 to
estimate the number of zero–one tables with given row sums
r1, r2, . . . , rm and column sums c1, c2, . . . , cn. Because the or-
dering of the column or row sums does not affect the total num-
ber of tables, in the following examples we attempt to arrange
the rows and columns in such a way that the cv2 is made small.
We discuss some heuristic rules for arranging the rows and
columns to achieve a low cv2 in Section 7.

We first tested our method on counting the number of 12×12
zero–one tables with all marginal sums equal to 2, which is
a subset of the 12 × 12 “magic squares.” For CP sampling, the
cv2 of the weights was .04. It took about 1 second to obtain
10,000 tables and their weights using the delicate SIS proce-
dure described in Section 4. The average of the weights gives
rise to an estimate of (2.196 ± .004) × 1016, where the number
after the “±” sign is the standard error. For this table, the ex-
act answer of 21,959,547,410,077,200 was given by Wang and
Zhang (1998). Although Wang and Zhang’s formula provides
a fast answer to this problem, it is often difficult to quickly com-
pute their formula for larger zero–one tables.

Figure 1. Histogram of 1,000 Importance Weights.

Counting the number of tables with the same marginal sums
as the finch data (see Table 1) is a more challenging exercise.
The last row of the original table is removed, because it consists
of all 1’s and will not affect the counting. We ordered the 17 col-
umn sums from the largest to the smallest and applied the CP
sampling, which gives a cv2 of around 1. With 10,000 samples,
which took about 10 seconds, we estimated the total number
of zero–one tables to be (6.72 ± .07) × 1016. As a verification,
we obtained a more accurate estimate of 6.7150 × 1016 based
on 108 samples. Here the exact answer was computed for us by
David desJardins using a clever divide-and-conquer algorithm.
His program (confirmed by an independent check) gives exactly
67,149,106,137,567,626 tables. We see that the SIS algorithm
gives a very accurate approximation. Figure 1, a histogram of
1,000 importance weights, shows that the weights are tightly
distributed in a relatively small range. The ratio of the maxi-
mum weight over the median weight is about 10.

To further challenge our method, we randomly generated
a 50 × 50 table for which the probability for each cell to be 1
is .2. The row sums of the table are

10,8,11,11,13,11,10,9,7,9,10,16,11,9,

12,14,12,7,9,10,10,6,11,8,9,8,14,12,

5,10,10,8,7,8,10,10,14,6,10,7,13,4,6,

8,9,15,11,12,10,6,

and the column sums are

9,6,12,11,9,8,8,11,9,11,13,7,10,8,9,7,

8,3,10,11,13,7,5,11,10,9,10,13,9,9,7,7,

6,8,10,12,8,12,16,12,15,12,13,13,10,7,

12,13,6,11.

We ordered the column sums from largest to smallest and
used CP sampling, which gave a cv2 of around .03. Based on
100 samples, which took a few minutes to generate, we esti-
mated that the total number of zero–one tables with these mar-
ginal sums was (7.7 ± .1) × 10432.
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Because our method generally works well when the marginal
sums do not vary much, we tried another example for which
the marginal sums were forced to vary considerably. We gen-
erated a 50 × 50 table with cell (i, j) being 1 with probability
exp(−6.3(i + j − 2)/(m + n − 2)), which gave rise to the row
sums

14,14,19,18,11,12,12,10,13,16,8,12,

6,15,6,7,12,1,12,3,8,5,9,4,2,4,1,4,

4,5,2,3,3,1,1,1,2,1,1,2,1,3,3,1,3,

2,1,1,1,2

and the column sums

14,13,14,13,13,12,14,8,11,9,10,8,

9,8,4,7,10,9,6,7,6,5,6,8,1,6,6,3,

2,3,5,4,5,2,2,2,3,2,4,3,1,1,1,3,2,

2,3,5,2,5.

With the same SIS method as in the previous case, we had a cv2

of .2. Based on 1,000 samples, we estimated the total number
of zero–one tables with these margins as (8.9 ± .1) × 10242.
Based on 10,000 samples, the estimate was improved to
(8.78 ± .05) × 10242. Finally, we estimated the total number
of 100 × 100 zero–one tables with all marginal sums equal to 2
to be (2.96 ± .03) × 10314 based on 100 Monte Carlo samples.
The cv2 in this case was .008, showing again that the SIS ap-
proach is extremely efficient. In comparison, we know of no
MCMC-based algorithm that can achieve a comparable accu-
racy for counting tables of these sizes with a reasonable amount
of computing time.

6.2 Testing Zero–One Tables in Ecology

For the finch data, the observed test statistic (1) as sug-
gested by Roberts and Stone (1990) is 53.1. We applied the
CP-based SIS to approximate the p value of this statistic. Our
algorithm took about 10 seconds to generate 10,000 tables,
based on which we estimated the p value as (4 ± 2.8) × 10−4.
A longer simulation of 1,000,000 SIS samples gave an estimate
of (3.96± .36)×10−4, which took about 18 minutes. Thus there
is strong evidence against the null hypothesis of a uniform dis-
tribution conditional on the marginal sum. The null distribution
of the test statistic in the form of a histogram (computed using
the weighted samples) is given in Figure 2.

The following MCMC algorithm has been proposed to sim-
ulate from the uniform distribution of the tables and to estimate
the p value (Besag and Clifford 1989; Cobb and Chen 2003).
Pick two rows and two columns at random; if the intersection
of the two rows and two columns are one of the following two
types,

1 0
or

0 1
0 1 1 0,

then switch to the other type; otherwise, stay at the orig-
inal table. Within 18 minutes, this MCMC scheme gener-
ated 15,000,000 samples, giving an estimated p value of
(3.56 ± .68) × 10−4. Thus the SIS algorithm is about four
times more efficient than the MCMC algorithm (to achieve the

Figure 2. Approximated Null Distribution of the Test Statistic Based
on 10,000 Weighted Samples. The vertical line indicates the ob-
served S̄2(T0).

same standard error) on this example. We note that for more
complex functionals, say E(S̄2), the relative efficiency of SIS
can be even higher.

Sanderson (2000) described a method for generating zero–
one tables with fixed margins, which he applied to the finch data
with an implied belief that the tables obtained are uniformly
distributed. His method does not produce uniformly distributed
tables, however. For example, for the set of 3 × 3 tables with
marginal sums (2,2,1) for both the columns and the rows, we
found that the probability for Sanderson’s method of generating
one of the five possible configurations is 332/1,512, but that of
generating each of the remaining configurations is 295/1,512.
Because Sanderson’s sampling method does not generate tables
uniformly, the conclusion of his statistical hypothesis testing is
questionable.

Many other occurrence matrices describing the distribution
of birds, reptiles, and mammals on oceanic archipelagoes or
mountain ranges have been collected (see, e.g., Cook and Quinn
1995). To compare the SIS method with the MCMC algorithm,
we analyzed another dataset of the distribution of 23 land birds
on the 15 southern islands in the Gulf of California (Cody
1983). The occurrence matrix has row sums 14, 14, 14, 12,
5, 13, 9, 11, 11, 11, 11, 11, 7, 8, 8, 7, 2, 4, 2, 3, 2, 2, and 2,
and column sums 21, 19, 18, 19, 14, 15, 12, 15, 12, 12, 12,
5, 4, 4, and 1. Based on 100,000 sampled tables using the SIS
algorithm, which took about 5 minutes, we estimated that the
p value for the test statistic (1) is .053 ± .003. The MCMC al-
gorithm took about 6 minutes to generate 2,000,000 samples
and estimated a p value is .052 ± .006 (using 500,000 samples
as burn-in). This shows that the SIS algorithm is more than four
times faster than the MCMC algorithm for this example. A long
simulation of 1,000,000 samples based on the SIS method gave
an estimate of .0527 for the p value.

To compare the SIS and MCMC methods on a larger table,
we randomly generated a 100 × 10 table for which the proba-
bility for each cell to be 1 is .3. The row sums of the table are
27, 33, 31, 25, 35, 32, 31, 29, 21, and 26, and the column sums
are 2, 2, 3, 4, 4, 4, 3, 3, 4, 3, 4, 1, 0, 3, 3, 5, 5, 5, 1, 6, 3, 1,
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1, 5, 3, 2, 4, 1, 2, 1, 3, 2, 3, 3, 0, 3, 4, 5, 1, 4, 3, 2, 1, 1, 1,
6, 3, 2, 4, 0, 2, 3, 4, 2, 2, 5, 1, 3, 2, 2, 3, 3, 3, 5, 4, 3, 5, 4, 5,
4, 4, 2, 6, 6, 5, 2, 3, 2, 0, 3, 4, 3, 5, 4, 2, 3, 1, 3, 3, 2, 2, 3, 2,
2, 2, 2, 3, 2, 2, and 3. Based on 10,000 sampled tables using
the SIS method, which took about 35 seconds, we estimated
that the p value is .8894 ± .0027. The MCMC algorithm took
about 35 seconds to generate 200,000 samples and estimated
a p value of .8913 ± .0298 (using 50,000 samples as burn-in).
This shows that the SIS algorithm is more than 100 times faster
than the MCMC algorithm on this example. A long simulation
of 1,000,000 samples based on the SIS method gave an esti-
mated p value of .8868.

We note that the foregoing comparison between SIS and
MCMC focuses only on their efficiency in approximating p val-
ues (i.e., the expectation of a step function). The results may
differ if the expectation of another function is considered. For
example, the SIS method estimates E(S̄2) even more efficiently
than MCMC.

6.3 Testing the Rasch Model

Rasch (1960) proposed a simple linear logistic model to mea-
sure a person’s ability based on his or her answers to a dichoto-
mous response test. Suppose that n persons are asked to answer
m questions (items). We can construct a zero–one matrix based
on all of the answers. A 1 in cell (i, j) means that the ith person
answered the jth question correctly, and a 0 means otherwise.
The Rasch model assumes that each person’s ability is charac-
terized by a parameter θi, each item’s difficulty is characterized
by a parameter βj, and

P(xij = 1) = eθi−βj

1 + eθi−βj
, (14)

where xij is the ith person’s answer to the jth question. The
responses xij are assumed to be independent. The numbers of
items answered correctly by each person (the column sums)
are minimal sufficient statistics for the ability parameters, and
the numbers of people answering each item correctly (the row
sums) are minimal sufficient statistics for the item difficulty pa-
rameters.

The Rasch model has numerous attractive features and is
widely used for constructing and scoring educational and psy-
chological tests (Fischer and Molenaar 1995). There is a con-
siderable literature on testing the goodness of fit of the Rasch
model (see Glas and Verhelst 1995 for an overview). The va-
lidity of most of the proposed tests relies on asymptotic the-
ory, a reliance that Rasch did not feel very comfortable with
(Andersen 1995). In his seminal book, Rasch (1960) proposed
a parameter-free “exact” test based on the conditional distrib-
ution of the zero–one matrix of responses with the observed
marginal sums fixed. It is easy to see that under model (14), all
of the zero–one tables are uniformly distributed conditional on
the row and column sums. Because of the difficulty of accu-
rately approximating the distribution of test statistics under this
uniform distribution, Rasch never implemented his approach.
Besag and Clifford (1989) and Ponocny (2001) have studied us-
ing Monte Carlo methods to test the Rasch model. The concep-
tually simpler and more efficient SIS strategy developed in this
article is also ideally suited for implementing Rasch’s ideas. For
example, Chen and Small (2004) showed that in testing for item

bias (Kelderman 1989), the uniformly most powerful (UMP)
unbiased test resulting from Rasch’s idea (Ponocny 2001) is
both “exact” and highly powerful. In a simulation study with
100 samples, it was shown that the SIS-based UMP unbiased
test had a power of .90 at the .05 significance level, whereas the
popular Mantel–Haenszel test proposed by Holland and Thayer
(1988) had only power .41. Chen and Small (2004) also re-
ported that the SIS approach is more efficient and accurate than
the Monte Carlo methods developed by Ponocny (2001) and
Snijders (1991).

Here we study an example of the test of item bias for which
the exact p value is known. A similar version of the follow-
ing example was considered by Ponocny (2001) and Chen and
Small (2004). The zero–one matrix of responses is 100×6 with
all person scores (i.e., row sums) equal to 3 and all item totals
(i.e., column sums) equal to 50. There are two subgroups, the
first one consisting of the first 50 students. Consider testing the
alternative hypothesis that item 1 is biased with the test statistic

f (T) = #{students in first subgroup

who answer item 1 correctly}.
We want to calculate the p value for a table T0 with f (T0) = 30,
that is, to calculate P( f (T) ≥ 30|r, c) under the Rasch model.
Because of the symmetry of the marginals and the fact that all
marginals are given, the number of correct answers on item 1
among the first 50 students is hypergeometrically distributed; in
particular, P( f (T) ≥ 30|r, c) = .03567 under the Rasch model.

Based on 1,000 sampled tables, which took about 2 sec-
onds for the CP sampling method, we estimated a p value
of .0353 ± .0048. The MCMC algorithm took about 2 sec-
onds to generate 1,000,000 samples and estimated a p value of
.0348 ± .0051 (using 300,000 samples as burn-in). The MCMC
and SIS algorithms gave similar performance on this example.
Notice that the test statistic is the number of 1’s among the first
50 entries of the first column. The Markov chain may have less
autocorrelation for this simple test statistic.

6.4 Contingency Tables

To illustrate the SIS method described in Section 5 for count-
ing the number of contingency tables, we consider the two ex-
amples discussed by Diaconis and Gangolli (1995). The first
example is a 5 × 3 table with row sums 10, 62, 13, 11, and 39
and column sums 65, 25, and 45. We observed that the small-
est cv2 (1.07) was achieved when the column sums are arranged
from the largest to the smallest and row sums are arranged from
the smallest to the largest. We obtained 100,000 Monte Carlo
samples, which took less than 1 second and provided us with the
estimate of (2.393± .007)×108. The true value of 239,382,173
was given by Diaconis and Gangolli (1995).

Besides counting the number of tables, the SIS method is
also useful for carrying out certain hypothesis tests for contin-
gency tables. The conditional volume test proposed by Diaconis
and Efron (1985) addresses the question of whether the Pearson
chi-square statistic of a contingency table is “atypical” when
the observed table is regarded as a draw from the uniform
distribution over tables with the given marginal sums. The ob-
served chi-square statistic for the 5 × 3 table described earlier
is 72.1821. With 1,000,000 Monte Carlo samples produced by
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our SIS method, which took about 2 seconds, we estimated
a p value for the conditional volume test of .7610 ± .0005.
A random-walk-based MCMC algorithm was discussed by
Diaconis and Gangolli (1995) and can be described as follows.
Pick two rows and two columns uniformly at random, then add
or subtract 1 in the four entries at the intersection of the two
rows and two columns according to the following pattern:

+ −
or

− +
− + + −.

The two patterns are chosen with equal probability. The random
walk stays at the original table if the operation generates a neg-
ative table entry. This MCMC algorithm generated 800,000
samples in 2 seconds and estimated a p value of .77 ± .02
(with 100,000 samples as burn-in). Thus the CP sampling is
1,600 times faster than the MCMC algorithm for this exam-
ple. Diaconis and Gangolli (1995) gave the true value as .76086
based on a 12-hour exhaustive enumeration.

The second example is a 4 × 4 table with row sums 220,
215, 93, and 64 and column sums 108, 286, 71, and 127.
Ordering the row sums from largest to smallest and the col-
umn sums from smallest to largest works best, and yielded
a cv2 around 3.7. The estimate (for the total number of ta-
bles) based on 1,000,000 samples, which took 2 seconds, was
(1.225± .002)×1015. The true value of 1,225,914,276,768,514
was given by Diaconis and Gangolli (1995). Diaconis and Efron
(1985) gave a formula for approximately counting the num-
ber of tables with given row and column sums that estimates
1.235 × 1016 tables for this example. Holmes and Jones (1996)
estimated 1.226 × 1016 tables by the rejection method. We also
performed the conditional volume test for this example. Based
on the 1,000,000 Monte Carlo samples that we generated for
estimating the total number of tables, we estimated the p value
to be .1532 ± .0008. In contrast, the MCMC algorithm took the
same amount of time (2 seconds) to generate 800,000 samples
and estimated a p value of .166 ± .003 (with 100,000 samples
as burn-in). Therefore, the SIS approach is about 14 times faster
than the MCMC method for this problem.

Holmes and Jones (1996) gave another example, with five
row sums, 9, 49, 182, 478, and 551, and four column sums, 9,
309, 355, and 596, and showed that the approximation formula
of Diaconis and Efron (1985) does not work well. A distinctive
feature of their example is that both the row and column sums
have very small values. We tried SIS on this example, using the
original order of the rows and ordering the column sums in de-
creasing order. The cv2 was around 7, so that the effective sam-
ple size was about N/(1 + 7) = 12.5% × N. Holmes and Jones’
first algorithm has an acceptance rate of 9.7%, and the revised
one has an acceptance rate of 12.5%. In terms of effective sam-
ple size, our algorithm is as efficient as their revised algorithm.
However, the SIS approach is simpler to implement and easier
to understand than the revised algorithm of Holmes and Jones,
which requires calculating the coefficients of a product of some
very large polynomials.

For the Holmes and Jones example, we estimated the to-
tal number of tables to be (3.384 ± .009) × 1016 based on
1,000,000 SIS samples. This took about 1 second to pro-
duce. Several estimates based on 108 samples were all around
3.383 × 1016. In contrast, the estimates given by Holmes and
Jones (1996) are 3.346 × 1016 and 3.365 × 1016, which we be-
lieve underestimate the true number of tables.

7. DISCUSSION

In this article, we have developed a set of sequential impor-
tance sampling strategies for computing with zero–one or con-
tingency tables. Our results show that these approaches are both
very efficient and simple to implement. Two distinctive features
of our approach to sampling zero–one tables are (a) it guaran-
tees that sequential procedure always produces a valid table,
thus avoiding wasting computational resources, and (b) it uses
the CP sampling as the trial distribution to greatly increase its
efficiency.

For CP sampling, we used weights proportional to r(l)
i /[n −

(l − 1) − r(l)
i ]. Because the CP distribution q(t1) is not exactly

the same as the target distribution p(t1) (the marginal distribu-
tion of the first column), we may want to adjust the weights to
make q(t1) closer to p(t1). One easy adjustment is to use the
set of weights {r(l)

i /[n − (l − 1) − r(l)
i ]}u, where u > 0 can be

chosen by the user. One may use a small sample size to estimate
the cv2 and choose the u that gives the lowest cv2. This should
not take more than a few seconds. For all of the zero–one tables
that we have tested, the choice of u = 1 has worked very well.
Although some small variation of u (e.g., ranging from .8 to 1.2)
improved the efficiency of SIS a little, we did not observe any
dramatic effect for the examples that we considered.

We used several different orderings of row sums and column
sums. Our experience is that for zero–one tables, it is best to or-
der the column sums from largest to smallest. This makes intu-
itive sense, because when we start with columns with many 1’s,
we do not have many choices, and q(tl|tl−1, . . . , t1) must be
close to p(tl|tl−1, . . . , t1). After such columns have been sam-
pled, the updated row sums will be greatly reduced, which
will cause q(tl|tl−1, . . . , t1) to be closer to p(tl|tl−1, . . . , t1).
Because of the way in which we do the sampling, we need to
order the row sums from largest to smallest. Another option is
to sample rows instead of columns. Our experience is that if
the number of rows is greater than the number of columns, then
sampling rows gives better results.

For contingency tables, we found that listing the column
sums in decreasing order and listing the row sums in increasing
order works best. The intuition is similar to that for zero–one
tables. A surprising fact for contingency tables is that, given
a certain ordering of the row and column sums, sampling the
columns is the same as sampling the rows. It is not difficult to
check this fact by carrying out our sampling method. Thus we
do not need to worry about whether exchanging the roles of
rows and columns provides better performance.

Because the tables produced by the SIS approach described
here have a distribution very close to the target one (as evi-
denced by the low cv2 values), the SIS method is markedly
better than the available MCMC approach, which typically has
a very long autocorrelation time, especially for large tables.
This advantage of the SIS is reflected not only by a more
accurate Monte Carlo approximation, but also by a more re-
liable estimate of the standard error of this approximation.
To achieve the same accuracy, SIS usually needs fewer tables
compared with the MCMC method; therefore, SIS becomes
even more attractive when evaluating the test statistic itself is
time-consuming. Furthermore, estimating the normalizing con-
stant of the target distribution is a rather straightforward step for
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the SIS method, but is much more difficult for MCMC strate-
gies. For the table-counting problem, to our knowledge there
are no MCMC algorithms that can achieve an accuracy even
close to that of the SIS approach.

APPENDIX A: PROOF OF THEOREM 1

We start by giving an algorithm for generating tables uniformly
from all m × n zero–one tables with given row sums r1, . . . , rm and
first column sum c1.

Algorithm.
1. For i = 1, . . . ,m, randomly choose ri positions from the ith row

and put 1’s in. The choices of positions are independent across
different rows.

2. Accept those tables with given first column sum c1.

It is easy to see that tables generated by this algorithm are uni-
formly distributed over all m × n zero–one tables with given row sums
r1, . . . , rm and first column sum c1. We can derive the marginal distri-
bution of the first column based on this algorithm. At step 1, we choose
the first cell at the ith row [i.e., the cell at position (i,1)] to put 1 in
with probability

(
n − 1
r1 − 1

)/(
n
r1

)
= r1/n.

Because the choices of positions are independent across different rows,
after step 1 the marginal distribution of the first column is the same as
the distribution of Z [defined by (5)] with pi = ri/n. Step 2 rejects the
tables whose first column sum is not c1. This implies that after step 2,
the marginal distribution of the first column is the same as the condi-
tional distribution of Z [defined by (6)] given SZ = c1 with pi = ri/n.

APPENDIX B: PROOF OF THEOREM 2

Suppose that there are l distinct values among {b1, . . . ,bn} and as-
sume that i1 < · · · < il are the jump points, that is,

bik−1+1 = · · · = bik > bik+1, k = 1, . . . , l − 1,

bil−1+1 = · · · = bil ,

where i0 = 0, il = n. Because b′
i equals bi or bi − 1 and b is or-

dered from largest to smallest, it is clear that if we have ik−1 < i ≤ ik
and ik < j ≤ ik+1 for any i, j, k, then b′

i ≥ b′
j. But within each block

from b′
ik

to b′
ik+1

, some of the b′
i’s are equal to bik and the others are

equal to bik − 1. In other words, the b′
i’s may not be ordered from

largest to smallest in each block. If there is a j such that ik−1 < j < ik
and

b′
j = bik − 1, b′

j+1 = bik ,

then we show in the following that we can switch b′
j and b′

j+1 and still
maintain property (13). There are two different cases to consider:

Case (a):
∑j

i=1 b′
i <

∑j
i=1 a′

i. In this case, of course property (13)
still holds after we switch b′

j and b′
j+1 and obtain

b′
j = bik , b′

j+1 = bik − 1.

Case (b):
∑j

i=1 b′
i = ∑j

i=1 a′
i, which we will show can never hap-

pen. Because
∑j+1

i=1 b′
i ≤ ∑j+1

i=1 a′
i, we have a′

j+1 ≥ b′
j+1 = bik . But

because the a′
i are monotone nonincreasing, we have

a′
ik−1+1 ≥ · · · ≥ a′

j ≥ a′
j+1 ≥ bik .

Because b′
i ≤ bik for ik−1 + 1 ≤ i < j, and b′

j = bik − 1, we must have

j∑

i=ik−1+1

b′
i <

j∑

i=ik−1+1

a′
i. (B.1)

Combining (B.1) with the fact that
∑ik−1

i=1 b′
i ≤ ∑ik−1

i=1 a′
i, we finally

have

j∑

i=1

b′
i <

j∑

i=1

a′
i,

which contradicts the assumption that
∑j

i=1 b′
i = ∑j

i=1 a′
i.

The preceding arguments imply that we can always switch
b′

j and b′
j+1 and maintain (13) if

b′
j = bik − 1, b′

j+1 = bik .

After a finite number of such switches, all of the bi’s in this block must
be ordered from largest to smallest, b′

ik−1+1 ≥ · · · ≥ b′
ik
, which easily

leads to the conclusion that b′ ≺ a′.
[Received September 2003. Revised June 2004.]
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